技术

并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go细节 codereview mat使用 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 MVCC 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes自动扩容缩容 神经网络模型优化 直觉上理解机器学习 knative入门 如何学习机器学习 神经网络系列笔记 TIDB源码分析 《阿里巴巴云原生实践15讲》笔记 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 扩展Kubernetes 副本一致性 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全机制 jvm crash分析 Prometheus 学习 Kubernetes监控 Kubernetes 控制器模型 容器日志采集 容器狂占cpu怎么办? 容器狂打日志怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes objects之编排对象 源码分析体会 自动化mock AIOps说的啥 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 kubernetes实践 jib源码分析之细节 线程排队 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 marathon-client 源码分析 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 swagger PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 《深入剖析kubernetes》笔记 精简代码的利器——lombok 学习 编程语言的动态性 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 分布式计算系统的那些套路 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 mysql 批量操作优化 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 mesos 的一些tips mesos 集成 calico calico学习 AQS2——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 硬件对软件设计的影响 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记2 《mysql技术内幕》笔记1 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 学习并发 从一个marathon的问题开始的 docker 环境(主要运行java项目)常见问题 Scala的一些梗 OpenTSDB 入门 spring事务小结 事务一致性 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型 java exception Linux IO学习 network channel network byte buffer 测试环境docker化实践 netty(七)netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 mesos深入 Macvlan Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker中涉及到的一些linux知识 hystrix学习 Linux网络源代码学习——整体介绍 zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty(六)netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 Redis概述 机器学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 那些有用的sql语句 异构数据库表在线同步 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM内存与执行 git spring rmi和thrift maven/ant/gradle使用 再看tcp mesos简介 缓存系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 VPN(Virtual Private Network) Kubernetes存储 Kubernetes 其它特性 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 使用etcd + confd + nginx做动态负载均衡 如何通过fleet unit files 来构建灵活的服务 CoreOS 安装 CoreOS 使用 Go学习 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

标签


容器狂打日志怎么办?

2019年03月05日

简介

除了docker image 时间长了会占用大量磁盘空间外(参见关于docker image的那点事儿),容器在运行时大量写日志也是个很头疼的问题。

最近碰到一个问题,部分项目在容器疯狂打日志,把磁盘都弄满了,弄满的原因有以下两个

  1. 日志写到了stdout下,详情见下文
  2. 日志写到某个文件下,日志数量本身就很大

针对日志文件过大的问题,有几种方法

  1. 堵,限定一个容器最多使用多少磁盘空间
  2. 疏,以特定用户运行项目,该容器内用户只可以访问特定的文件夹,比如/logs,然后将容器/logs 映射到物理机上,定时清理
  3. 监控,随时监控磁盘,异常时报警
  4. 日志由日志采集工具收集,不在磁盘上停留

stdout log

JSON File logging driver By default, Docker captures the standard output (and standard error) of all your containers, and writes them in files using the JSON format. 对于一个容器来说,当应用把日志输出到 stdout 和 stderr 之后,容器项目在默认情况下就会把这些日志输出到宿主机上的一个 JSON 文件里。

「Allen 谈 Docker 系列」之 docker logs 实现剖析

对于应用的标准输出(stdout)日志,Docker Daemon 在运行这个容器时就会创建一个协程(goroutine),负责标准输出日志。由于此 goroutine 绑定了整个容器内所有进程的标准输出文件描述符,因此容器内应用的所有标准输出日志,都会被 goroutine 接收。goroutine 接收到容器的标准输出内容时,立即将这部分内容,写入与此容器—对应的日志文件中,日志文件位于/var/lib/docker/containers/<container_id>,文件名为-json.log。

Docker 则通过 docker logs 命令向用户提供日志接口。docker logs 实现原理的本质均基于与容器一一对应的 -json.log,`kubectl logs`类似

从这可以看到几个问题

  1. app 同时输出文件日志和stdout 是一种浪费
  2. stdout 日志在 /var/lib/docker/containers/<container_id> 下可以被清理, 也可以配置 docker daemon 设置 log-driver 和 log-opts 参数

      "log-driver":"json-file",
       	 "log-opts": {"max-size":"500m", "max-file":"3"}
    
  3. 这部分文件过大,带来的另一个问题是,删除容器时 json-file 所在的/var/lib/docker/containers/$ContainerId/xx-json.log 依然残留在物理机磁盘上,成为耗尽磁盘的定时炸弹
  4. 使用定时任务每天执行docker system prune -af

限定容器占用的磁盘空间

docker的storage-driver是overlay2时,限制单个容器可占用的磁盘空间

几个关键字

  1. xfs,linux 文件系统 CentOS 7开始,预设的文件系统由原来的EXT4变成了XFS文件系统
  2. pquota,也就是 project quotas ,How to Enable Disk Quotas on an XFS File SystemXFS supports disk quotas by user, by group, and by project. Project disk quotas allow you to limit the amount of disk space on individual directory hierarchies. 限定一个目录的大小

     # mount 时 指定文件系统类型,使用-o enbale project quotas
     mount –o prjquota /dev/xvdb1 /xfs
     # 限定 project=test 的 /data 目录 soft limit=5M hard limit=6M
     xfs_quota –x –c ‘limit –p bsoft=5m bhard=6m test’ /data
    
  3. /etc/docker/daemon.json配置文件如下,这里将每个容器可以使用的磁盘空间设置为1G:

     {
         "data-root": "/data/docker",
         "storage-driver": "overlay2",
         "storage-opts": [
         "overlay2.override_kernel_check=true",
         "overlay2.size=1G"
         ]
     }
    

限定volume 占用的磁盘空间

这是一个传统的文件夹 大小限定问题

疏 ==> 非root用户运行进程

docker和k8s安全机制

监控

从物理机维度,当物理机磁盘 剩余到一定占比时 报警

从容器维度 则有两个问题

  1. 如果不限制项目的日志文件目录的话,如何自动感知项目的日志文件目录位置?暂时没有找到好办法。
  2. 如何清理日志文件?Linux或者Unix系统中,通过rm -rf或者文件管理器删除文件,将会从文件系统的目录结构上解除链接(unlink)。如果文件是被打开的(有一个进程正在使用),那么进程将仍然可以读取该文件,磁盘空间也一直被占用。正确姿势是cat /dev/null > 目标文件

从物理机角度,有一个方案是执行docker system df -v 可以列出每个容器占用的 磁盘空间,当期大小超过一定阈值时,可以根据container id(想办法将container id 与应用信息关联起来) 将其删除。

CONTAINER ID        IMAGE                                                                                       COMMAND                  LOCAL VOLUMES       SIZE                CREATED ago             STATUS              NAMES
2ba3bb81f4a6        harbor.test.ximalaya.com/test/wws-library-web:20190305-190207                               "/sbin/my_init"          0                   3.76MB              40 minutes ago ago      Up 40 minutes       mesos-8f4307c7-6a44-467e-9a94-56e09182013d
98e129663d1c        harbor.test.ximalaya.com/test/anchor-sell-web:20190305-182739                               "/sbin/my_init"          0                   2.47MB              About an hour ago ago   Up About an hour    mesos-60309b8a-27bd-4744-99f9-685f68dca71a
cd38d9c7fb71        test/docker-count-service-album-test:6                                                      "/usr/local/tomcat/b…"   0                   49.2MB              2 hours ago ago         Up 2 hours          mesos-33f4264e-77fc-4a4f-84c7-aae78519c0ad

现在就是说不清楚,其size 列的大小说的是哪部分?笔者只找到了其中的一半。

其它

为提高系统友好性,在删除项目日志后 应向负责人发一个消息提醒。

docker 还可以限制磁盘的读写速度 限制容器的 Block IO - 每天5分钟玩转 Docker 容器技术(29)