技术

并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go细节 codereview mat使用 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 MVCC 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes自动扩容缩容 神经网络模型优化 直觉上理解机器学习 knative入门 如何学习机器学习 神经网络系列笔记 TIDB源码分析 《阿里巴巴云原生实践15讲》笔记 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 扩展Kubernetes 副本一致性 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全机制 jvm crash分析 Prometheus 学习 Kubernetes监控 Kubernetes 控制器模型 容器日志采集 容器狂占cpu怎么办? 容器狂打日志怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes objects之编排对象 源码分析体会 自动化mock AIOps说的啥 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 kubernetes实践 jib源码分析之细节 线程排队 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 marathon-client 源码分析 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 swagger PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 《深入剖析kubernetes》笔记 精简代码的利器——lombok 学习 编程语言的动态性 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 分布式计算系统的那些套路 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 mysql 批量操作优化 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 mesos 的一些tips mesos 集成 calico calico学习 AQS2——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 硬件对软件设计的影响 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记2 《mysql技术内幕》笔记1 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 学习并发 从一个marathon的问题开始的 docker 环境(主要运行java项目)常见问题 Scala的一些梗 OpenTSDB 入门 spring事务小结 事务一致性 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型 java exception Linux IO学习 network channel network byte buffer 测试环境docker化实践 netty(七)netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 mesos深入 Macvlan Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker中涉及到的一些linux知识 hystrix学习 Linux网络源代码学习——整体介绍 zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty(六)netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 Redis概述 机器学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 那些有用的sql语句 异构数据库表在线同步 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM内存与执行 git spring rmi和thrift maven/ant/gradle使用 再看tcp mesos简介 缓存系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 VPN(Virtual Private Network) Kubernetes存储 Kubernetes 其它特性 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 使用etcd + confd + nginx做动态负载均衡 如何通过fleet unit files 来构建灵活的服务 CoreOS 安装 CoreOS 使用 Go学习 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

标签


《聊聊架构》 书评的笔记

2019年04月19日

简介

聊聊架构

多个范畴的生命周期

人一生的生命周期被各种不同的场景、任务、角色、身份切分成了各不相同的生命周期,其中有核心生命周期,有非核心生命周期,有些必须自己做(读书、生活、谈恋爱),有些可以交给别人做。

在人类历史中,随着工作越来越复杂、工作任务越来越多,人类协作越来越精细,然后就产生了分工,分工就是人类因为协作产生的生命周期的切分。

明确了生命周期这个概念就会意识到,随着事物的发展,把它的一部分职能从其核心生命周期切分出去,构造出新的生命周期,能够帮助这一事物明确自身的核心生命周期、明确自己的职责和权力,有更多时间用在自己擅长的事情上。

代码、技术、业务和管理

要分得清楚访问代码、业务代码、存储代码、胶水代码各自应在哪些层级,它们应该是什么角色,而不是所有代码散乱的混在一起,看起来似乎按照经典的MVC分层,实际上业务代码却同时出现在controller/service/dao,这样其实并没有明确的划分。

正确的做法应该是controller完成访问逻辑;DAO完成存储逻辑;service完成胶水逻辑,承上启下,利用DTO转换访问参数、执行业务逻辑、调用DAO映射存储模型、再利用DTO把业务处理结果转换为响应结果,业务逻辑在业务模型中实现。如果把业务逻辑跟业务数据在一起实现就是充血模型,进一步深化就是DDD模式。

如果把业务逻辑跟业务数据在一起实现就是充血模型,进一步深化就是DDD模式。只有这样才完成了明确的软件层次划分,每层各司其职、权责对等,否则就是大泥球。 明白了这一点,自然就能分得清楚业务的事务跟关系数据库的事务不是一回事,也就不会考虑完成业务上的事务要依赖关系数据库事务确保数据完整性。

完全可以把二者分开,利用更符合业务规律的做法去实现,甚至业务本身已经有成熟的方案确保数据完整性,而不再需要依赖关系数据库事务。在业务上对关系数据库事务ACID特性的依赖既然不再是必须,对拥有ACID特性的数据库依赖自然也就不再是必须,完全可以根据业务需要选择合适的存储方案。

业务模型和具体实现不再依赖于某些具体方案的技术特性,实现了业务与技术的解耦,也就更容易实现横向扩展。现在又发现横向扩展也是自然界的一个基本特性。无数基本粒子构成原子、无数原子构成一个具体的宏观物体,一个人不够用就增加更多人。如果一个系统的规模在横向扩展上达到了瓶颈,不能再靠简单的增加数量获得提升的时候,一定是这个系统的组织架构存在某些不合理因素。

说到这里自然就要说到业务和技术的关系。前面说到软件是现实世界的映射抽象,由虚拟人代替自然人去完成一些工作。要做好软件自然就要理解业务,对业务的理解越深刻就越有可能做出优秀的软件。

但是现实世界太复杂了,随着业务发展,软件规模会越来越大,复杂性越来越高,一个人难以胜任全部架构工作,于是就产生了架构师团队,架构师也有了更细致的分工。架构师的生命周期也相应发生了拆分,也就产生了业务架构、应用架构、系统架构。

架构师为了能够实现自己的架构思想,自然需要与职能对等的权力。所以架构师其实不是一个纯粹的技术职位,而是拥有管理职能的职位,而不同角色的架构师对技术的要求也不尽相同。