技术

并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go细节 codereview mat使用 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 MVCC 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes自动扩容缩容 神经网络模型优化 直觉上理解机器学习 knative入门 如何学习机器学习 神经网络系列笔记 TIDB源码分析 《阿里巴巴云原生实践15讲》笔记 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 扩展Kubernetes 副本一致性 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全机制 jvm crash分析 Prometheus 学习 Kubernetes监控 Kubernetes 控制器模型 容器日志采集 容器狂占cpu怎么办? 容器狂打日志怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes objects之编排对象 源码分析体会 自动化mock AIOps说的啥 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 kubernetes实践 jib源码分析之细节 线程排队 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 marathon-client 源码分析 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 swagger PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 《深入剖析kubernetes》笔记 精简代码的利器——lombok 学习 编程语言的动态性 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 分布式计算系统的那些套路 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 mysql 批量操作优化 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 mesos 的一些tips mesos 集成 calico calico学习 AQS2——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 硬件对软件设计的影响 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记2 《mysql技术内幕》笔记1 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 学习并发 从一个marathon的问题开始的 docker 环境(主要运行java项目)常见问题 Scala的一些梗 OpenTSDB 入门 spring事务小结 事务一致性 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型 java exception Linux IO学习 network channel network byte buffer 测试环境docker化实践 netty(七)netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 mesos深入 Macvlan Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker中涉及到的一些linux知识 hystrix学习 Linux网络源代码学习——整体介绍 zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty(六)netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 Redis概述 机器学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 那些有用的sql语句 异构数据库表在线同步 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM内存与执行 git spring rmi和thrift maven/ant/gradle使用 再看tcp mesos简介 缓存系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 VPN(Virtual Private Network) Kubernetes存储 Kubernetes 其它特性 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 使用etcd + confd + nginx做动态负载均衡 如何通过fleet unit files 来构建灵活的服务 CoreOS 安装 CoreOS 使用 Go学习 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

标签


Tomcat源码分析

2019年11月26日

简介

tomcat8源码maven方式组织

使用golang 语言 实现一个http server,只需几行代码即可,为何用java 实现如何“沉重”呢?这背后tomcat 是一个什么角色呢?

package main
import (
    "io"
    "net/http"
)
func helloHandler(w http.ResponseWriter, req *http.Request) {
    io.WriteString(w, "hello, world!\n")
}
func main() {
    http.HandleFunc("/", helloHandler)
    http.ListenAndServe(":12345", nil)
}

本文整体结构受周瑜《Tomcat底层源码解析与性能调优》培训视频的启发。

从各个视角看tomct

tomcat是一个Servlet 容器?

单纯的思考一下这句话,我们可以抽象出来这么一段代码:

class Tomcat {
    List<Servlet> sers;
}

如果Tomcat就长这样,那么它肯定是不能工作的,所以,Tomcat其实是这样:

class Tomcat {
    Connector connector; // 连接处理器
    List<Servlet> sers;
}

Servlet规范与tomcat实现

绿色的类定义 在servlet-api 包中,其它类除自定义外在tomcat 包中

整体架构

tomcat 的功能简单说 就是让 一堆class文件+web.xml 可以对外支持http

启动过程

Tomcat 独立部署的模式下,我们通过 startup 脚本来启动 Tomcat,Tomcat 中的 Bootstrap 和 Catalina 会负责初始化类加载器,并解析server.xml和启动这些组件。

/usr/java/jdk1.8.0_191/bin/java -Dxx -Xxx org.apache.catalina.startup.Bootstrap start

分别启动连接管理部分和业务处理部分

业务处理部分中,各个类的关系 在tomcat server.xml 中体现的也非常直观

<Server port="8005" shutdown="SHUTDOWN">
    <Listener className="org.apache.catalina.core.ThreadLocalLeakPreventionListener" />
    <Service name="Catalina">
        <Connector port="8080" protocol="HTTP/1.1"
            connectionTimeout="20000"
            redirectPort="8443" />
        <Connector port="8009" protocol="AJP/1.3" redirectPort="8443" />
    </Service>
    <Engine name="Catalina" defaultHost="localhost">
        <Realm className="org.apache.catalina.realm.UserDatabaseRealm"
            resourceName="UserDatabase"/>
        <!--可以另外创建一个host,使用不同的appBase-->
        <Host name="localhost"  appBase="webapps"
            unpackWARs="true" autoDeploy="true">
            <!--可以配置 Context>
        </Host>
    </Engine>
</Server>

io处理

connector 架构

io 和线程模型

同样一个颜色的是内部类的关系

  1. Http11NioProtocol start 时会分别启动poller 和 acceptor 线程
  2. acceptor 持有ServerSocket/ServerSocketChannel, 负责监听新的连接,并将得到的Socket 注册到Poller 上
  3. Poller 持有Selector, 负责selector.select() 监听读写事件,将新的socket 注册到selector上,以及其它通过addEvent 加入到Poller中的event
  4. Http11NioProcessor 封装了 http 1.1 的协议处理部分,比如parseRequestLine,连接出问题时response设置状态码为503 或400 等。以读事件为例, 最终会将 数据读取到 Request 对象的inputBuffer 中

线程数量

public class NioEndpoint extends AbstractEndpoint<NioChannel> {

    private Executor executor = new ThreadPoolExecutor(getMinSpareThreads(), getMaxThreads(), 60, TimeUnit.SECONDS,taskqueue, tf);
    
    private int pollerThreadCount = Math.min(2,Runtime.getRuntime().availableProcessors()); // new Thread().start() 的方式
    protected int acceptorThreadCount = 0;      // new Thread().start() 的方式

    // poller  内部除了 selector.select() 逻辑外,一般通过executor 异步执行
    // acceptor 就是简单的 accept 一个socket 并将其 加入到poller 的event 队列中( 以将socket 注册到selector)所以没有用到executor
    
}

业务处理

container 架构

为了更清晰一点,上图只画出了Host 类族,Engine、Context、Wrapter 与Host 类似。黄色部分组成了一个pipeline,可以看到Engine、Context、Wrapter 和Host 作为容器,并不亲自“干活”,而是交给对应的pipeline。

public class CoyoteAdapter implements Adapter {
    // 有读事件时会触发该操作
    public boolean event(org.apache.coyote.Request req,
        org.apache.coyote.Response res, SocketStatus status) {
        ...
        // 将读取的数据写入到 request inputbuffer 
        request.read();
        ...
        // 触发filter、servlet的执行
        connector.getService().getContainer().getPipeline().getFirst().event(request, response, request.getEvent());
        ...
    }
}

pipeline 逐步传递请求直到Servlet

tomcat的类加载

Tomcat热部署与热加载 值得细读

tomcat并没有完全遵循类加载的双亲委派机制,考虑几个问题:

  1. 如果在一个Tomcat内部署多个应用,多个应用内使用了某个类似的几个不同版本,如何互不影响?org.apache.catalina.loader.WebappClassLoader
  2. 如果多个应用都用到了某类似的相同版本,是否可以统一提供,不在各个应用内分别提供,占用内存呢?common ClassLoader 其实质是一个指定了classpath(classpath由catalina.properties中的common.loader 指定common.loader="${catalina.base}/lib","${catalina.base}/lib/*.jar","${catalina.home}/lib","${catalina.home}/lib/*.jar")的URLClassLoader

public final class Bootstrap {
    ClassLoader commonLoader = null;
    ClassLoader catalinaLoader = null;
    public void init() throws Exception {
        initClassLoaders();
        Thread.currentThread().setContextClassLoader(catalinaLoader);
        SecurityClassLoad.securityClassLoad(catalinaLoader);
        ...
    }
    private void initClassLoaders() {
        ...
        commonLoader = createClassLoader("common", null);
        ...
        catalinaLoader = createClassLoader("server", commonLoader);
    }
}

热部署和热加载是类似的,都是在不重启Tomcat的情况下,使得应用的最新代码生效。热部署表示重新部署应用,它的执行主体是Host,表示主机。热加载表示重新加载class,它的执行主体是Context,表示应用。

Sprint Boot如何利用Tomcat加载Servlet?

在内嵌式的模式下,Bootstrap 和 Catalina 的工作就由 Spring Boot 来做了,Spring Boot 调用了 Tomcat 的 API 来启动这些组件。

tomcat 源码中直接提供Tomcat类,其java doc中有如下表述:Tomcat supports multiple styles of configuration and startup - the most common and stable is server.xml-based,implemented in org.apache.catalina.startup.Bootstrap. Tomcat is for use in apps that embed tomcat. 从Tomcat类的属性可以看到,该有的属性都有了,内部也符合Server ==> Service ==> connector + Engine ==> Host ==> Context ==> Wrapper 的管理关系,下图绿色部分是通用的。

所以 Minimal 情况下 new 一个tomcat 即可启动一个tomcat。

Tomcat tomcat = new Tomcat();
tomcat.setXXX;
tomcat.start();

所以spring-boot-starter-web 主要体现在 创建 并配置Tomcat 实例,具体参见SpringBoot 中内嵌 Tomcat 的实现原理解析

Tomcat如何支持异步Servlet?

从上文类图可知,NioEndpoint中有一个Executor,selector.select 之后,Executor 异步处理 Socket.read + 协议解析 + Servlet.service,如果Servlet中的处理逻辑耗时越长就会导致长期地占用Executor,影响Tomcat的整体处理能力。 为此一个解决办法是

public class AsyncServlet extends HttpServlet {
    Executor executor = xx
    public void doGet(HttpServletRequest req, HttpServletResponse res) {
        AsyncContext asyncContext = req.startAsync(req, res);
        executor.execute(new AsyncHandler(asyncContext));
    }
}
public class AsyncHandler implements Runnable {
    private AsyncContext ctx;
    public AsyncHandler(AsyncContext ctx) {
        this.ctx = ctx;
    }
    @Override
    public void run() {
        //耗时操作
        PrintWriter pw;
        try {
            pw = ctx.getResponse().getWriter();
            pw.print("done!");
            pw.flush();
            pw.close();
        } catch (IOException e) {
            e.printStackTrace();
        }
        ctx.complete();
    }
}

startAsync方法其实就是创建了一个异步上下文AsyncContext对象,该对象封装了请求和响应对象。然后创建一个任务用于处理耗时逻辑,后面通过AsyncContext对象获得响应对象并对客户端响应,输出“done!”。完成后要通过complete方法告诉Tomcat已经处理完,Tomcat就会请求对象和响应对象进行回收处理或关闭连接。

public class Request
    implements HttpServletRequest {
    public AsyncContext startAsync(ServletRequest request,
            ServletResponse response) {
        ...
        asyncContext = new AsyncContextImpl(this);
        ...
        asyncContext.setStarted(getContext(), request, response,
                request==getRequest() && response==getResponse().getResponse());
        asyncContext.setTimeout(getConnector().getAsyncTimeout());
        return asyncContext;
    }
}

写回数据由Response 完成,从代码看,AsyncContextImpl.complete 方法表示 tomcat 可以重新开始关注该socket read事件了(之前一直在等socket 写回客户端数据)。

其它

tomcat为什么运行war 而不是jar

如果一个项目打成jar包,那么tomcat 在启动时 就要去分析下 这个jar 是一个web项目还是一个 普通二方库。

安全

如果你在Servlet代码中直接 加入System.exit(1) 你会发现,仅仅是作为一个tomcat 上层的一个“业务方”,却有能力干掉java进程,即tomcat的运行。

public class XXServlet extends HttpServlet {
    protected void doGet(HttpServletRequest req, HttpServletResponse resp)
        throws ServletException, IOException{
        System.exit(1);
        xxx
    }
}