技术

并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go细节 codereview mat使用 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 MVCC 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes自动扩容缩容 神经网络模型优化 直觉上理解机器学习 knative入门 如何学习机器学习 神经网络系列笔记 TIDB源码分析 《阿里巴巴云原生实践15讲》笔记 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 扩展Kubernetes 副本一致性 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全机制 jvm crash分析 Prometheus 学习 Kubernetes监控 Kubernetes 控制器模型 容器日志采集 容器狂占cpu怎么办? 容器狂打日志怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes objects之编排对象 源码分析体会 自动化mock AIOps说的啥 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 kubernetes实践 jib源码分析之细节 线程排队 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 marathon-client 源码分析 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 swagger PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 《深入剖析kubernetes》笔记 精简代码的利器——lombok 学习 编程语言的动态性 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 分布式计算系统的那些套路 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 mysql 批量操作优化 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 mesos 的一些tips mesos 集成 calico calico学习 AQS2——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 硬件对软件设计的影响 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记2 《mysql技术内幕》笔记1 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 学习并发 从一个marathon的问题开始的 docker 环境(主要运行java项目)常见问题 Scala的一些梗 OpenTSDB 入门 spring事务小结 事务一致性 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型 java exception Linux IO学习 network channel network byte buffer 测试环境docker化实践 netty(七)netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 mesos深入 Macvlan Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker中涉及到的一些linux知识 hystrix学习 Linux网络源代码学习——整体介绍 zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty(六)netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 Redis概述 机器学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 那些有用的sql语句 异构数据库表在线同步 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM内存与执行 git spring rmi和thrift maven/ant/gradle使用 再看tcp mesos简介 缓存系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 VPN(Virtual Private Network) Kubernetes存储 Kubernetes 其它特性 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 使用etcd + confd + nginx做动态负载均衡 如何通过fleet unit files 来构建灵活的服务 CoreOS 安装 CoreOS 使用 Go学习 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

标签


Pilot源码分析

2020年01月09日

前言

pilot-discovery宏观设计

Istio Pilot代码深度解析

如果把Pilot看成一个处理数据的黑盒,则其有两个输入,一个输出

  1. 目前Pilot的输入包括两部分数据来源:

    1. 服务数据(随着服务的启停、灰度等自动的): 来源于各个服务注册表(Service Registry),例如Kubernetes中注册的Service,Consul/Nacos中的服务等。
    2. 配置规则(人为的): 各种配置规则,包括路由规则及流量管理规则等,通过Kubernetes CRD(Custom Resources Definition)形式定义并存储在Kubernetes中。PS:本质就是一些配置,只是pilot 没有提供直接的crud API,通过k8s中转一下:人 ==> k8s ==> pilot
  2. Pilot的输出为符合xDS接口的数据面配置数据,并通过gRPC Streaming接口将配置数据推送到数据面的Envoy中。

代码、配置、架构一体化视角 深入解读Service Mesh背后的技术细节

从协议视角看pilot-discovery

获取配置和服务数据

底层平台 多种多样,istio 抽象一套自己的数据模型(pilot/pkg/model)及数据存取接口,以屏蔽底层平台。

服务数据部分

Istio 服务注册插件机制代码解析

中间Abstract Model 层 实现如下

Service describes an Istio service (e.g., catalog.mystore.com:8080)Each service has a fully qualified domain name (FQDN) and one or more ports where the service is listening for connections. Service用于表示Istio服务网格中的一个服务(例如 catalog.mystore.com:8080)。每一个服务有一个全限定域名(FQDN)和一个或者多个接收客户端请求的监听端口。

SercieInstance中存放了服务实例相关的信息,一个Service可以对应到一到多个Service Instance,Istio在收到客户端请求时,会根据该Service配置的LB策略和路由规则从可用的Service Instance中选择一个来提供服务。

ServiceDiscovery抽象了一个服务发现的接口,所有接入istio 的平台应提供该接口实现。

Controller抽象了一个Service Registry变化通知的接口,该接口会将Service及Service Instance的增加,删除,变化等消息通知给ServiceHandler(也就是一个func)。调用Controller的Run方法后,Controller会一直执行,将监控Service Registry的变化,并将通知到注册到Controller中的ServiceHandler中

由上图可知,底层平台 接入时必须实现 ServiceDiscovery 和 Controller,提供Service 数据,并在Service 变动时 执行handler。 整个流程 由Controller.Run 触发,将平台数据 同步and 转换到 istio 内部数据模型(ServiceDiscovery实现),若数据有变化,则触发handler。

配置数据部分

ConfigStore describes a set of platform agnostic APIs that must be supported by the underlying platform to store and retrieve Istio configuration. ConfigStore定义一组平台无关的,但是底层平台(例如K8S)必须支持的API,通过这些API可以存取Istio配置信息每个配置信息的键,由type + name + namespace的组合构成,确保每个配置具有唯一的键。写操作是异步执行的,也就是说Update后立即Get可能无法获得最新结果。

ConfigStoreCache表示ConfigStore的本地完整复制的缓存,此缓存主动和远程存储保持同步,并且在获取更新时提供提供通知机制。为了获得通知,事件处理器必须在Run之前注册,缓存需要在Run之后有一个初始的同步延迟。

IstioConfigStore扩展ConfigStore,增加一些针对Istio资源的操控接口

由上图可知,底层平台 接入时必须实现 ConfigStoreCache,提供Config 数据,并在Config 变动时 执行handler。 整个流程 由ConfigStoreCache.Run 触发,将平台数据 同步and 转换到 istio 内部数据模型(ConfigStore实现),若数据有变化,则触发handler。

Environment 聚合

Environment provides an aggregate environmental API for Pilot. Environment为Pilot提供聚合的环境性的API

由上文可知,启动时,向 Controller 和ConfigStoreCache 注册handler,执行 ConfigStoreCache.Run 和 Controller.Run,便可以同步 service 和config 数据,并在数据变动时 触发handler 执行。pilot数据输入的部分就解决了

启动

启动命令示例:/usr/local/bin/pilot-discovery discovery --monitoringAddr=:15014 --log_output_level=default:info --domain cluster.local --secureGrpcAddr --keepaliveMaxServerConnectionAge 30m

package bootstrap
func NewServer(args *PilotArgs) (*Server, error) {
    s.initKubeClient(args)
    s.initMeshConfiguration(args, fileWatcher)
    s.initMeshNetworks(args, fileWatcher)
    s.initCertController(args)
    s.initConfigController(args)
    s.initServiceControllers(args)
    s.initDiscoveryService(args)
    s.initMonitor(args.DiscoveryOptions.MonitoringAddr)
    s.initClusterRegistries(args)
    s.initDNSListener(args)
    // Will run the sidecar injector in pilot.Only operates if /var/lib/istio/inject exists
    s.initSidecarInjector(args)
    s.initSDSCA(args)
}

启动的逻辑很多,但从config+service+grcServer 视角看 启动代码的核心如下:

func NewServer(args *PilotArgs) (*Server, error) {
    s.addStartFunc(func(stop <-chan struct{}) error {
        go s.configController.Run(stop)
        return nil
    })
    s.addStartFunc(func(stop <-chan struct{}) error {
        go serviceControllers.Run(stop)
        return nil
    })
    ## DiscoveryServer 注册config/service 事件handler
    s.initEventHandlers(){
        s.ServiceController().AppendServiceHandler(serviceHandler)
        s.ServiceController().AppendInstanceHandler(instanceHandler)
        s.configController.RegisterEventHandler(descriptor.Type, configHandler)
    }
    s.initGrpcServer(args.KeepaliveOptions)
}

处理xds请求

如果golang 里有类似 tomcat、springmvc 的组件,那源码看起来就很简单了。

envoy 通过grpc 协议与 pilot-discovery 交互,因此首先找 ads.proto 文件

ads.proto

基于ads.proto 生成 ads.pb.go 文件github.com/envoyproxy/go-control-plane/envoy/service/discovery/v2/ads.pb.go 其中定义了 服务接口 AggregatedDiscoveryServiceServer,其实现类 DiscoveryServer,DiscoveryServer 方法分散于多个go 文件中

DiscoveryServer 通过Environment 间接持有了 config和 service 数据。此外, pilot-discovery Server启动时便 为DiscoveryServer 注册了config service 变更处理函数,不管config/service 如何变更,都会触发 DiscoveryServer.ConfigUpdate

代码中 Server.EnvoyXdsServer 就是DiscoveryServer

func (s *Server) initEventHandlers() error {
    // Flush cached discovery responses whenever services configuration change.
    serviceHandler := func(svc *model.Service, _ model.Event) {
        pushReq := &model.PushRequest{...}
        s.EnvoyXdsServer.ConfigUpdate(pushReq)
    }
    s.ServiceController().AppendServiceHandler(serviceHandler)
    instanceHandler := func(si *model.ServiceInstance, _ model.Event) {
        s.EnvoyXdsServer.ConfigUpdate(&model.PushRequest{...})
    }
    s.ServiceController().AppendInstanceHandler(instanceHandler)
    if s.configController != nil {
        configHandler := func(old, curr model.Config, _ model.Event) {
            ...
            s.EnvoyXdsServer.ConfigUpdate(pushReq)
        }
        for _, descriptor := range schemas.Istio {
            s.configController.RegisterEventHandler(descriptor.Type, configHandler)
        }
    }
    return nil
}

proxy

Proxy contains information about an specific instance of a proxy (envoy sidecar, gateway,etc). The Proxy is initialized when a sidecar connects to Pilot, and populated from ‘node’ info in the protocol as well as data extracted from registries. proxy struct是sidecar 在 pilot 内的一个表示。

type Proxy struct {
    ClusterID string
    // Type specifies the node type. First part of the ID.
    Type NodeType
    IPAddresses []string
    ID string
    Locality *core.Locality
    // DNSDomain defines the DNS domain suffix for short hostnames (e.g.
    // "default.svc.cluster.local")
    DNSDomain string
    ConfigNamespace string
    // Metadata key-value pairs extending the Node identifier
    Metadata *NodeMetadata
    // the sidecarScope associated with the proxy
    SidecarScope *SidecarScope
    // The merged gateways associated with the proxy if this is a Router
    MergedGateway *MergedGateway
    // service instances associated with the proxy
    ServiceInstances []*ServiceInstance
    // labels associated with the workload
    WorkloadLabels labels.Collection
    // Istio version associated with the Proxy
    IstioVersion *IstioVersion
}

envoy 向pilot 发送请求

grpc 请求通过 StreamAggregatedResources 来处理

func (s *DiscoveryServer) StreamAggregatedResources(stream ads.AggregatedDiscoveryService_StreamAggregatedResourcesServer) error {
    peerInfo, ok := peer.FromContext(stream.Context())
    ...
    con := newXdsConnection(peerAddr, stream)
    ...
    // xds请求消息接收,接收后存放到reqChannel中
    reqChannel := make(chan *xdsapi.DiscoveryRequest, 1)
    go receiveThread(con, reqChannel, &receiveError)
    for {
        select {
        case discReq, ok := <-reqChannel:
            switch discReq.TypeUrl {
            case ClusterType:
                ...
                err := s.pushCds(con, s.globalPushContext(), versionInfo())
            case ListenerType:
                ...
            case RouteType:
                ...
            case EndpointType:
                ...
            }
        case pushEv := <-con.pushChannel:
            ...
        }
    }
}

StreamAggregatedResources 函数的for循环是无限循环流程,这里会监控两个channel 通道的消息,一个是reqChannel的新连接消息, 一个是pushChannel的配置变更消息。reqChannel 接收到新数据时,会从reqChannel 取出xds 请求消息discReq, 然后根据不同类型的xds请求,调用相应的xds下发逻辑。在v2版本的xds 协议实现中,为了保证多个xds数据下发的顺序,lds、rds、cds和eds 等所有的交互均在一个grpc 连接上完成,因此StreamAggregatedResources 接收到第一个请求时,会将连接保存起来,供后续配置变更时使用。

DiscoveryServer 收到 ClusterType 的请求要生成 cluster 数据响应

func (s *DiscoveryServer) pushCds(con *XdsConnection, push *model.PushContext, version string) error {
    rawClusters := s.generateRawClusters(con.node, push)
    ...
    response := con.clusters(rawClusters, push.Version)
    err := con.send(response)
    ...
    return nil
}

cluster 数据实际由ConfigGenerator 生成

func (s *DiscoveryServer) generateRawClusters(node *model.Proxy, push *model.PushContext) []*xdsapi.Cluster {
    rawClusters := s.ConfigGenerator.BuildClusters(node, push)
    ...
    return rawClusters
}

数据来自PushContext.Services 方法

func (configgen *ConfigGeneratorImpl) buildOutboundClusters(proxy *model.Proxy, push *model.PushContext) []*apiv2.Cluster {
    clusters := make([]*apiv2.Cluster, 0)
    networkView := model.GetNetworkView(proxy)
    for _, service := range push.Services(proxy) {
        ...
    }
    return clusters
}

cluster 数据来自 PushContext的privateServicesByNamespace 和 publicServices, 通过代码可以发现,它们都是初始化时从model.Environment 取Service 数据的。

func (ps *PushContext) Services(proxy *Proxy) []*Service {
    ...
    out := make([]*Service, 0)
    if proxy == nil {
        for _, privateServices := range ps.privateServicesByNamespace {
            out = append(out, privateServices...)
        }
    } else {
        out = append(out, ps.privateServicesByNamespace[proxy.ConfigNamespace]...)
    }
    out = append(out, ps.publicServices...)
    return out
}

pilot 监控到配合变化 将数据推给envoy

istio 收到变更事件并没有立即处理,而是创建一个定时器事件,通过定时器事件延迟一段时间。这样做的初衷:

  1. 减少配置变更的下发频率(会对多次变更进行合并),进而减少pilot 和 envoy 的通信开销(毕竟是广播,每一个envoy 都要发)
  2. 延迟对配置变更消息的处理, 可以保证配置下发时变更的完整性

config 或 service 数据变更触发 DiscoveryServer.ConfigUpdate 发送请求到 pushChannel

func (s *DiscoveryServer) ConfigUpdate(req *model.PushRequest) {
    inboundConfigUpdates.Increment()
    s.pushChannel <- req
}

DiscoveryServer 启动时 触发了handleUpdates 负责DiscoveryServer.pushChannel 的消费

func (s *DiscoveryServer) Start(stopCh <-chan struct{}) {
    go s.handleUpdates(stopCh)
    go s.periodicRefreshMetrics(stopCh)
    go s.sendPushes(stopCh)
}

handleUpdates 触发 debounce(防抖动)

// 第一个参数ch实际是 pushChannel
func debounce(ch chan *model.PushRequest, stopCh <-chan struct{}, pushFn func(req *model.PushRequest)) {
    var req *model.PushRequest
    pushWorker := func() {
        ...	
        // 符合一定条件 执行 pushFn
        go push(req)
        ...
    }
    for {
        select {
        case <-freeCh:
            ...
        case r := <-ch:
            ...
            req = req.Merge(r)
        case <-timeChan:
            if free {
                pushWorker()
            }
        case <-stopCh:
            return
        }
    }
}

pushFn 实际是DiscoveryServer.Push ==> AdsPushAll ==> startPush 将数据塞入 PushQueue中。

func (s *DiscoveryServer) Push(req *model.PushRequest) {
    if !req.Full {
        req.Push = s.globalPushContext()
        go s.AdsPushAll(versionInfo(), req)
        return
    }
    ...
    req.Push = push
    go s.AdsPushAll(versionLocal, req)
}

DiscoveryServer 启动时 触发sendPushes ,负责消费PushQueue ==> doSendPushes 最终发给每一个envoy/conneciton 的pushChannel ,envoy/conneciton 的pushChannel 的消费逻辑在DiscoveryServer.StreamAggregatedResources的for 循环中

func (s *DiscoveryServer) StreamAggregatedResources(stream ads.AggregatedDiscoveryService_StreamAggregatedResourcesServer) error {
    ...
    for {
        select {
        case discReq, ok := <-reqChannel:
            ...
        case pushEv := <-con.pushChannel:
            err := s.pushConnection(con, pushEv)
		    pushEv.done()
		    if err != nil {
			    return nil
		    }
        }
    }
}

pilot-agent

  1. 所谓sidecar 容器, 不是直接基于envoy 制作镜像,容器启动后,entrypoint 也是envoy 命令
  2. sidecar 容器的entrypoint 是 /usr/local/bin/pilot-agent proxy,首先生成 一个envoyxx.json 文件,然后 使用 exec.Command启动envoy
  3. 进入sidecar 容器,ps -ef 一下, 是两个进程

     ## 具体明令参数 未展示
     UID        PID  PPID  C STIME TTY          TIME CMD
     1337         1     0  0 May09 ?        00:00:49 /usr/local/bin/pilot-agent proxy
     1337       567     1  1 09:18 ?        00:04:42 /usr/local/bin/envoy -c envoyxx.json
    

为什么要用pilot-agent?负责Envoy的生命周期管理(生老病死)

  1. 启动envoy
  2. 热更新envoy,poilt-agent只负责启动另一个envoy进程,其他由新旧两个envoy自行处理
  3. 抢救envoy
  4. 优雅关闭envoy