技术

并发的成本 基础设施优化 hashicorp raft源码学习 docker 架构 mosn细节 与微服务框架整合 Java动态代理 编程范式 并发通信模型 《网络是怎样连接的》笔记 go细节 codereview mat使用 jvm 线程实现 go打包机制 go interface及反射 如何学习Kubernetes 《编译原理之美》笔记——后端部分 《编译原理之美》笔记——前端部分 Pilot MCP协议分析 go gc 内存管理玩法汇总 软件机制 istio流量管理 Pilot源码分析 golang io 学习Spring mosn源码浅析 MOSN简介 《datacenter as a computer》笔记 学习JVM Tomcat源码分析 Linux可观测性 MVCC 学习存储 学计算 Gotty源码分析 kubernetes operator kaggle泰坦尼克问题实践 kubernetes自动扩容缩容 神经网络模型优化 直觉上理解机器学习 knative入门 如何学习机器学习 神经网络系列笔记 TIDB源码分析 《阿里巴巴云原生实践15讲》笔记 Alibaba Java诊断工具Arthas TIDB存储——TIKV 《Apache Kafka源码分析》——简介 netty中的线程池 guava cache 源码分析 Springboot 启动过程分析 Spring 创建Bean的年代变迁 Linux内存管理 自定义CNI IPAM 扩展Kubernetes 副本一致性 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 docker和k8s安全机制 jvm crash分析 Prometheus 学习 Kubernetes监控 Kubernetes 控制器模型 容器日志采集 容器狂占cpu怎么办? 容器狂打日志怎么办? Kubernetes资源调度——scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes objects之编排对象 源码分析体会 自动化mock AIOps说的啥 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes介绍 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 kubernetes实践 jib源码分析之细节 线程排队 跨主机容器通信 jib源码分析及应用 为容器选择一个合适的entrypoint kubernetes yaml配置 marathon-client 源码分析 《持续交付36讲》笔记 mybatis学习 程序猿应该知道的 无锁数据结构和算法 CNI 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 swagger PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 《深入剖析kubernetes》笔记 精简代码的利器——lombok 学习 编程语言的动态性 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 分布式计算系统的那些套路 Storm 学习 AQS1——论文学习 Unsafe Spark Stream 学习 linux vfs轮廓 mysql 批量操作优化 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 hbase 泛谈 forkjoin 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 bgp初识 mesos 的一些tips mesos 集成 calico calico学习 AQS2——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 硬件对软件设计的影响 《Elasticsearch权威指南》笔记 mockito简介及源码分析 2017软件开发小结—— 从做功能到做系统 《Apache Kafka源码分析》——clients dns隐藏的一个坑 《mysql技术内幕》笔记2 《mysql技术内幕》笔记1 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 学习并发 从一个marathon的问题开始的 docker 环境(主要运行java项目)常见问题 Scala的一些梗 OpenTSDB 入门 spring事务小结 事务一致性 javascript应用在哪里 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 java内存模型 java exception Linux IO学习 network channel network byte buffer 测试环境docker化实践 netty(七)netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 Go并发机制及语言层工具 mesos深入 Macvlan Linux网络源代码学习——数据包的发送与接收 《docker源码分析》小结 docker中涉及到的一些linux知识 hystrix学习 Linux网络源代码学习——整体介绍 zookeeper三重奏 数据库的一些知识 Spark 泛谈 链式处理的那些套路 netty(六)netty回顾 Thrift基本原理与实践(二) Thrift基本原理与实践(一) 回调 异步执行抽象——Executor与Future Docker0.1.0源码分析 java gc Jedis源码分析 Redis概述 机器学习泛谈 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 向Hadoop学习NIO的使用 以新的角度看数据结构 并发控制相关的硬件与内核支持 systemd 简介 那些有用的sql语句 异构数据库表在线同步 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM内存与执行 git spring rmi和thrift maven/ant/gradle使用 再看tcp mesos简介 缓存系统 java nio的多线程扩展 《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go常用的一些库 Python初学 Goroutine 调度模型 虚拟网络 《程序员的自我修养》小结 VPN(Virtual Private Network) Kubernetes存储 Kubernetes 其它特性 访问Kubernetes上的Service Kubernetes副本管理 Kubernetes pod 组件 使用etcd + confd + nginx做动态负载均衡 如何通过fleet unit files 来构建灵活的服务 CoreOS 安装 CoreOS 使用 Go学习 JVM类加载 硬币和扑克牌问题 LRU实现 virtualbox 使用 ThreadLocal小结 docker快速入门

标签


并发的成本

2020年06月14日

简介

进程

进程作为能拥有资源和独立运行的基本单位,由于进程是一个资源的拥有者,因而在创建,撤销,切换中,系统必须为之付出较大的时空开销(资源的初始化和销毁)。正因如此,进程数目不宜过多,进程切换的频率也不宜过高,这也就限制了并发程度的进一步提高。不少学者发现能不能:将进程的上述两个属性分开,由操作系统分开处理亦即对于作为调度和分配的基本单位,不同时作为拥有资源的单位,以做到“轻装上阵”,而对于拥有资源的基本单位,又不对其进行频繁的切换。正是在这种思想的指导下:形成了线程的概念,把线程作为调度和分派的基本单位,而进程作为资源拥有的基本单位.把传统进程的两个属性分开,使线程基本上不拥有资源。

为什么进程的切换开销比线程大?

  1. 在创建或撤销进程时,系统都有为之创建和回收进程控制块,分配和回收资源,如内存空间和IO设备等,线程没有这些。
  2. 在进程切换时,涉及到当前进程CPU,环境的保存及新被调度运行进程的CPU环境的设置,而线程的切换则仅需保存和设置少量的寄存器内容,不涉及到存储器管理方面。

线程

线程创建的成本

2018.7.7 补充:线程池的原理 我们首先来看,为什么说每次处理任务的时候再创建并销毁线程效率不高?

Thread t = new Thread();	// 此时只是在java 层面创建了一个对象
t.start()	

native 的start 指令做了很多事情

JVM_ENTRY(void, JVM_StartThread(JNIEnv* env, jobject jthread))
JVMWrapper("JVM_StartThread");
JavaThread *native_thread = NULL;
{
	MutexLocker mu(Threads_lock);
	if (java_lang_Thread::is_stillborn(JNIHandles::resolve_non_null(jthread)) ||
java_lang_Thread::thread(JNIHandles::resolve_non_null(jthread)) != NULL) {	
		throw_illegal_thread_state = true;
	} else {
		jlong size =	java_lang_Thread::stackSize(JNIHandles::resolve_non_null(jthread));
		size_t sz = size > 0 ? (size_t) size : 0;
		native_thread = new JavaThread(&thread_entry, sz);
		if (native_thread->osthread() != NULL) {
			// Note: the current thread is not being used within "prepare".
			native_thread->prepare(jthread);
		}
	} 
}
Thread::start(native_thread);
JVM_END

这段代码我也不懂,只是想表明, native 做了很多事情。包括但不限于:

  1. 创建一个native 线程
  2. 分配线程栈。jvm 参数-Xss,每个线程的堆栈大小,JDK5.0以后每个线程堆栈大小为1M,以前每个线程堆栈大小为256K.根据应用的线程所需内存大小进行调整.在相同物理内存下,减小这个值能生成更多的线程.但是操作系统对一个进程内的线程数还是有限制的,不能无限生成,经验值在3000~5000左右.小的应用,如果栈不是很深,128k应该是够用的,大的应用建议使用256k。这个选项对性能影响比较大,需要严格的测试(其它材料:64 位的 Linux 为每个线程的栈分配了 8MB 的内存,还预分配了 64MB 的内存作为堆内存池)。从这里可以看到两点:

    1. 如果xss不显式设置, 新建线程时 os分配1m的空间绝对不是一个很easy的操作
    2. 线程数量 不准确的说 是一个内存耗费问题,在这个角度看,空间和算力有了一个对应关系。
  3. 将java 线程 关联到 native 线程上

从中可以看到:尽管java 线程和 os 线程具备一对一关系,但java 仍在jvm 层面上 为线程 维持了一些 数据结构。就好像 线程池中的线程 不是单纯的 new Thread,java 线程 也不是 单纯的 os 线程。

如果没有这些微观细节,人就很难直观上 感受 线程池的好处。

2019.5.27补充:Linux内核基础知识

线程切换的成本

不仅创建线程的代价高,线程切换的开销也很高

  1. 线程切换只能在内核态完成,如果当前用户处于用户态,则必然引起用户态与内核态的切换。
  2. 上下文切换,前面说线程信息需要用一个task_struct保存,线程切换时,必然需要将旧线程的task_struct从内核切出,将新线程的切入,带来上下文切换。除此之外,还需要切换寄存器、程序计数器、线程栈(包括操作栈、数据栈)等。2019.03.22补充:《反应式设计模式》尽管CPU已经越来越快,但更多的内部状态已经抵消了纯执行速度上带来的进步,使得上下文切换大约需要耗费1微秒的时间(数千个CPU时钟周期),这一点在二十年来几乎没有大的改进。
  3. 执行线程调度算法,线程1放弃cpu ==> 线程调度算法找下一个线程 ==> 线程2
  4. 缓存缺失,切换线程,需要执行新逻辑。如果二者的访问的地址空间不相近,则会引起缓存缺失。 PS “进程切换”的代价更大巨大,linux线程切换和进程切换当你改变虚拟内存空间的时候,处理的页表缓冲(processor’s Translation Lookaside Buffer (TLB))或者相当的神马东西会被全部刷新,这将导致内存的访问在一段时间内相当的低效。

协程

创建协程

为什么协程的开销比线程的开销小?

  1. Java Thread 和 kernel Thread 是1:1,Goroutine 是M:N ==> 执行体创建、切换过程不用“陷入”内核态。
  2. 仅需切换栈寄存器和程序计数器(待确认)
  3. JDK5以后Java Thread Stack默认为1M,Goroutine 的Stack初始化大小为2k
  4. kernel 线程 对寄存器中的内容进行恢复还需要向操作系统申请或者销毁对应的资源
  5. 创建协程时,会从进程的堆中分配一段内存作为协程的栈。线程的栈有 8MB,而协程栈的大小通常只有几十 KB。而且,C 库内存池也不会为协程预分配内存,它感知不到协程的存在。

减少io操作引发的线程切换

切换请求是内核通过切换线程实现的,什么时候会切换线程呢?不只时间片用尽,当调用阻塞方法时,内核为了让 CPU 充分工作,也会切换到其他线程执行。一次上下文切换的成本在几十纳秒到几微秒间,当线程繁忙且数量众多时,这些切换会消耗绝大部分的 CPU 运算能力。PS:时间片用尽导致的切换是不可避免的,而是io导致的切换则可以规避。

下图描述了异步 IO 的非阻塞读和异步框架结合后,是如何切换请求的。

然而,写异步化代码很容易出错。因为所有阻塞函数,都需要通过非阻塞的系统调用拆分成两个函数。虽然这两个函数共同完成一个功能,但调用方式却不同。第一个函数由你显式调用,第二个函数则由多路复用机制调用。这种方式违反了软件工程的内聚性原则,函数间同步数据也更复杂。特别是条件分支众多、涉及大量系统调用时,异步化的改造工作会非常困难。

协程与异步编程相似的地方在于,它们必须使用非阻塞的系统调用与内核交互,把切换请求的权力牢牢掌握在用户态的代码中。但不同的地方在于,协程把异步化中的两段函数,封装为一个阻塞的协程函数。这个函数执行时,会使调用它的协程无感知地放弃执行权,由协程框架切换到其他就绪的协程继续执行。当这个函数的结果满足后,协程框架再选择合适的时机,切换回它所在的协程继续执行。

协程切换

每个线程有独立的栈,而栈既保留了变量的值,也保留了函数的调用关系、参数和返回值,CPU 中的栈寄存器 SP 指向了当前线程的栈,而指令寄存器 IP 保存着下一条要执行的指令地址。因此,从线程 1 切换到线程 2 时,首先要把 SP、IP 寄存器的值为线程 1 保存下来,再从内存中找出线程 2 上一次切换前保存好的寄存器值,写入 CPU 的寄存器,这样就完成了线程切换。用户态的代码切换协程,与内核切换线程的原理是一样的。

从协程 1 切换到协程 2 后的状态如下图所示:

每一次线程上下文的切换都需要消耗 ~1us 左右的时间。但是 Go 调度器对 Goroutine 的上下文切换 ~0.2us,除了减少上下文切换带来的开销,Golang 的调度器还能够更有效地利用 CPU 的缓存。

调度的成本

万字长文深入浅出 Golang RuntimeCPU 在时钟的驱动下, 根据 PC 寄存器从程序中取指令和操作数, 从 RAM 中取数据, 进行计算, 处理, 跳转, 驱动执行流往前. CPU 并不关注处理的是线程还是协程, 只需要设置 PC 寄存器, 设置栈指针等(这些称为上下文), 那么 CPU 就可以欢快的运行这个线程或者这个协程了.

调度的本质: 给CPU找活儿干 ==> PC 及 栈指针 能用即可 ==> 多任务 就得维护多份儿 PC及栈指针(栈空间) ==> PC(当前执行位置)和 栈空间 等聚合成一个数据结构,称为协程/线程/进程 ==> CPU层次的切换PC/SP 变成了切换 这个struct

真正运行的实体是CPU ,线程/协程是一个数据结构。线程的运行其实是被运行.阻塞其实是切换出调度队列, 不再去调度执行这个执行流. 其他执行流满足其条件, 便会把被移出调度队列的执行流重新放回调度队列.协程同理, 协程其实也是一个数据结构, 记录了要运行什么函数, 运行到哪里了.

  计算能力 需求   备注
软硬件 cpu 创建线程的业务是无限的 用一个数据结构 表示和存放你要执行的任务/线程/进程,任尓干着急,我调度系统按既有的节奏来。  
java线程池 线程池管理的线程 要干的活儿是无限的 用一个runnable对象表示一个任务,线程池线程依次从队列中取出任务来执行 线程池管理的线程数可以扩大和缩小
goroutine goroutine调度器管理的线程 要干的活儿是无限的 用协程表示一个任务,线程从各自的队列里取出任务执行 A线程干完了,还可以偷B线程队列的活儿干